, , , , e.a.

Functional Metal Oxide Nanostructures

Paperback Engels 2014 9781493900206
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

Metal oxides and particularly their nanostructures have emerged as animportant class of materials with a rich spectrum of properties and greatpotential for device applications. In this book, contributions from leadingexperts emphasize basic physical properties, synthesis and processing, and thelatest applications in such areas as energy, catalysis and data storage.  Functional Metal Oxide Nanostructuresis an essential reference for any materials scientist or engineer with aninterest in metal oxides, and particularly in recent progress in defectphysics, strain effects, solution-based synthesis, ionic conduction, and theirapplications.

Specificaties

ISBN13:9781493900206
Taal:Engels
Bindwijze:paperback
Uitgever:Springer New York

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

<p>Preface<br><br>1.  New Opportunities on Phase Transitions of Correlated Electron Nanostructures<br>1.1.  Introduction<br>1.2.  Electrical and Structural Transitions in VO<sub>2<br></sub>1.3.  Experimental Methods<br>1.4.  Results and Discussions<br>1.4.1.  Phase Inhomogeneity and Domain Organization<br>1.4.2.  Domain Dynamics and Manipulation<br>1.4.3.  Investigation of Phase Transition at the Single Domain Level<br>1.4.4.  Superelasticity in Phase Transition<br>1.4.5.  New Phase Stabilization with Strain<br>1.4.6.  Thermoelectric Across the Metal-Insulator Domain Walls<br>1.5.     Conclusions</p><p>2.  Controlling the Conductivity in Oxide Semiconductors<br>2.1.  Introduction<br>2.2.  Formalism and Computational Approach<br>2.3.  Results and Discussion<br>2.3.1.  ZnO<br>2.3.2.  SnO<sub>2<br></sub>2.3.3.  TiO<sub>2<br></sub>2.4.  Concluding Remarks<br><br>3.  The Role of Defects in Functional Oxide Nanostructures<br>3.1.  Introduction<br>3.2.  Defects in Metal Oxide Nanostructures<br>3.2.1.  Defect Structures in Metal Oxide Nanostructures3.2.2.  Imaging Defects in Metal Oxide Nanostructures<br>3.2.3.  Stability of Intrinsic Point Defects in Metal Oxide Nanostructures<br>3.3.  Electrical Response<br>3.3.1.  Point Defects and Charge Carriers<br>3.3.2.  Defects and P-Type Conductivity<br>3.3.3.  Defects and Conduction Mechanisms<br>3.3.4.  Plasmon Response in Defect-Rich Oxide Nanostructures<br>3.4.  Optical Response<br>3.4.1.  Photoluminescence from Point Defects in Oxide Nanostructures<br>3.4.2.  Raman Studies on Oxide Nanostructures<br>3.4.3.  Magneto-Optical Properties of Oxide Nanostructures<br>3.5.  Magnetic Response<br>3.5.1.  Magnetism in Metal Oxide Nanoparticles<br>3.5.2.  Ferromagnetism in Defect-Rich Semiconducting Metal Oxides<br />3.5.3.  Spin Polarization in Defect-Rich Metal Oxide Nanostructures<br>3.5.4.  Mechanisms for Magnetism in Metal Oxide Nanostructures<br>3.6.  Defect Engineering in Metal Oxide Nanostructures<br>3.7.  Conclusions</p><p>4.  Emergent Metal-Insulator Transitions Associated with Electronic Inhomogeneities in Low-Dimensional Complex Oxides<br>4.1.  Introduction<br>4.2.  Experimental Approach<br>4.2.1.  Fabrication of Spatially Confined Oxide Nanostructures<br>4.2.2.  Cryogenic Four-Probe STM<br>4.3.  Results and Discussion4.3.1.  Percolative Mott Transition in Sr<sub>3</sub>(Ru<sub>1-x</sub>Mn<sub>x</sub>)<sub>2</sub>O<sub>7<br></sub>4.3.2.  Confinement Effects and Tunable Emergent Behavior in La<sub>5/8-x</sub>Pr<sub>x</sub>Ca<sub>3/8</sub>MnO<sub>3<br></sub>4.4.  Conclusion<br><br>5.  Optical Properties of Nanoscale Transition Metal Oxides<br>5.1.  Physical, Chemical and Size-Shape Tunability in Transition Metal Oxides<br>5.2.  Optical Spectroscopy as a Probe of Complex Oxides<br>5.3.  Quantitative Models<br>5.3.1.  Confinement Models<br>5.3.2.  Descriptions of Inhomogeneous Media<br>5.3.3.  Inhomogeneous Media and Surface Plasmons<br>5.3.4.  Charge and Bonding Models<br>5.4.  Charge-Structure-Function Relationships in Model Nanoscale Materials<br>5.4.1.  Mott Transition in VO<sub>2</sub> Revealed by Infrared Spectroscopy<br>5.4.2.  Visualizing Charge and Orbitally Ordered Domains in La<sub>1/2</sub>Sr<sub>3/2</sub>MnO<sub>4<br></sub>5.4.3.  Discovery of Bound Carrier Excitation in Metal Exchanged Vanadium Oxide Nanoscrolls and Size Dependence of the Equatorial Stretching Modes<br>5.4.4.  Classic Test Cases: Quantum Size Effects in ZnO and TiO<sub>2<br></sub>5.4.5.  Optical Properties of Polar Oxide Thin Films and Nanoparticles<br>5.4.6.  Spectroscopic Determination of H<sub>2</sub> Binding Sites and Energies in Metal-Organic Framework Materials<br>5.5.  Summary and Outlook</p><p>6.  Electronic Properties of Post-Transition Metal Oxide Semiconductor Surfaces<br>6.1.  Introduction<br>6.2.  Surface Space-Charge Properties<br>6.2.1.  ZnO<br>6.2.2.  Ga<sub>2</sub>O<sub>3<br></sub>6.2.3.  CdO<br>6.2.4.  In<sub>2</sub>O<sub>3<br></sub>6.2.5.  SnO<sub>2<br></sub>6.3.  Bulk Band Structure Origin of Electron Accumulation Propensity<br>6.4.  Conclusion</p><p>7.  In Search of a Truly Two-Dimensional Metallic Oxide<br>7.1.  Introduction<br>7.2.  Methodology<br>7.3.  Results and Discussion</p><p>8.  Solution Phase Approach to TiO<sub>2</sub> Nanostructures8.1.  Introduction<br>8.2.  Approaches<br>8.2.1.  Porous Architectures Through Templated Self Assembly<br>8.2.2.  1-D Structures from Anodization<br>8.2.3.  Imprinting and Molding<br>8.2.4.  Templated Electrochemical Sythesis<br>8.2.5.  Single Crystalline 1-D Structures by Solution Phase Hydrothermal Growth<br>8.3.  Conclusion</p><p>9.  Oxide-Based Photonic Crystals from Biological Templates<br>9.1.  Introduction<br>9.2.  Engineered Photonic Crystals<br>9.2.1.  Characteristics of Photonic Band Structure Materials<br>9.2.2.  Photonic Crystals Operating in the Infrared<br>9.2.3.  Photonic Crystals Operating at Visible Frequencies<br>9.3.  Natural Photonic Crystals<br>9.3.1.  Structural Colors in Biology<br>9.3.2.  Structure Evaluation Methods<br>9.3.3.  Examples of Biological Photonic Structures<br>9.4.  Bio-Templated Photonic Crystals<br>9.4.1.  General Considerations<br>9.4.2.  Biotemplating Techniques<br>9.4.2.1.  Deposition and Evaporation Methods<br>9.4.2.2.  Sol-Gel Chemistry Methods<br>9.4.3.  Biotemplated Bandgap Crystals<br>9.5.  Conclusions</p><p>10.  Low-Dimensionality and Epitaxial Stabilization in Metal Supported Oxide Nanostructures: Mn<sub>x</sub>O<sub>y</sub> on Pd(100)<br>10.1.  Introduction<br />10.2.  Growth of Mn<sub>x</sub>O<sub>y­</sub> Layers on Pd(100)<br>10.2.1.  Low Coverage Regime<br>10.2.1.1.  MnO(111)-like Phases (Oxygen-Rich Regime)<br>10.2.1.2.  MnO(100)-like Phases (Intermediate Oxygen Regime)<br>10.2.1.3.  The Reduced Phases (Oxygen-Poor Regime)<br>10.2.2.  High Coverage Regime<br>10.2.2.1.  Formation of Mn<sub>3</sub>O<sub>4</sub> on MnO(001)<br>10.2.2.2.  Epitaxial Stabilization of MnO(111) Overlayers</p><p>11.  One Dimensional Oxygen-Deficient Metal Oxides<br>11.1.  Introduction11.2.  Oxygen-Deficient 1D-Nano-Ceo<sub>2-x</sub> and its Applications in the WGS Reaction<br>11.2.1.  Crystal Structure of Cubic-Ceria<br>11.2.2.  Backround of the WGS Reaction<br>11.2.3.  Synthesis of 1D-Ceria<br>11.2.4.  Testing 1D-Ceria for the WGS Reaction<br>11.3.  Sub-Stoichiometric Magnéli Phases 1D-Ti<sub>n</sub>O<sub>2n-1<br></sub>11.4.  Sub-Stoichiometric Chromium Oxide Nanobelts with Modulation Structures<br>11.5.  Summaries</p><p>12.  Oxide Nanostructures for Energy Storage<br>12.1.  Introduction<br>12.2.  Nano Oxides for Li-Ion Batteries<br>12.2.1.  Spinel LiMn<sub>2</sub>O<sub>4<br></sub>12.2.2.  Manganese Dioxide<br>12.2.3.  Vanadium Pentoxide (V<sub>2</sub>O<sub>5</sub>)<br>12.2.4.  Titanium Oxide<br>12.2.5.  Metal Oxides with Displacement Mechanism<br>12.2.6.  Nano-Oxide Coatings<br>12.3.  Nano Oxide for Electrochemical Capacitors<br>12.3.1.  Ruthenium Oxide (RuO<sub>2</sub>)<br>12.3.2.  Manganese Oxide (MnO<sub>2</sub>)<br>12.3.3.  Other Metal Oxides<br>12.3.4.  Hierarchical Metal Oxide-Carbon Composites<br>12.4.  Summary</p><p>13.  Metal Oxide Resistive Switching Memory<br>13.1.  Introduction<br>13.1.1.  Device Operation<br>13.1.2.  Device Characteristics<br>13.2.  Possible Physical Mechanism for Resistive Switching<br>13.2.1.  Conduction Mechanism<br />13.2.2.  Electroforming/Set/Reset Process with Oxygen Migration<br>13.2.3.  The Effect of Electrode Materials on Switching Modes<br>13.2.4.  Summary of the Physical Mechanism for Resistive Switching in Metal Oxide Memory<br>13.3.  Performances of Metal Oxide Memory Devices<br>13.4.  Cell Structure of Metal Oxide Memory Arrays<br>13.5.  Summary</p><p>14.  Nano Metal Oxides for Li-Ion Batteries<br>14.1.  Classification of Electrode Materials for Li-Ion Batteries<br>14.2.  Advantage &amp; Disadvantage of Nano-Electrode Materials<br>14.3.  Nano Metal Oxide Anode Materials<br>14.3.1.  Intercalation Metal Oxides<br>14.3.2.  Conversion Metal Oxide Materials<br>14.3.3.  Displacement Metal Oxide Materials<br>14.3.3.1.  Tin Dioxides Based Anode Materials<br>14.4.  Nano Metal Oxide Cathode Materials<br>14.4.1.  Nanoscale Cathode Materials<br>14.4.2.  Nanostructured Cathode Materials<br>14.5.  Nano Metal Oxides in Electrolyte<br>14.6.  Conclusion and Outlook</p>

Managementboek Top 100

Rubrieken

    Personen

      Trefwoorden

        Functional Metal Oxide Nanostructures